Molarity Problems Worksheet

$$
\begin{array}{cc}
\mathrm{M}=-\mathrm{n} & -\mathrm{n}=\# \text { moles } \\
\mathrm{V} & -\mathrm{V} \text { must be in liters (change if necessary) } \\
& - \text { Use } \mathrm{M} \text { or mol/L as unit for molarity }
\end{array}
$$

1. What is the molarity of a 0.30 liter solution containing 0.50 moles of NaCl ?
2. Calculate the molarity of 0.289 moles of FeCl_{3} dissolved in 120 ml of solution?
3. If a 0.075 liter solution contains 0.0877 moles of CuCO_{4}, what is the molarity?
4. How many moles of NaCl are present in $600 . \mathrm{ml}$ a 1.55 M NaCl solution?
5. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 1.63 liters of a 0.954 M solution?
6. How many liters of solution are needed to make a 1.66 M solution containing 2.11 moles of KMnO_{4} ?
7. What volume of a 0.25 M solution can be made using 0.55 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$?

For all of the problems below you will need to do a mole-mass conversion. Each problem will involve two steps.
8. What is the molarity in 650 ml of solution containing 63 grams of NaCl ?
9. How many grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to produce $500 . \mathrm{ml}$ of $1.66 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution?
10. What volume of a 0.88 M solution can be made using 130. grams of FeCl_{2} ?

Answers: (done quickly; there may be errors)

1. 1.7 M
2. 2.41 M
3. 1.2 M
4. 0.930 moles
5. 1.56 moles
6. 1.27 L
7. 2.2 L
8. 1.7 M
9. 61.5 grams
10. 1.2 L
